You need JavaScript enabled to view most of the content

Solow growth model in economics

The Solow Model - Introduction

Problem 1.

Production function: \[ Y=F(K,L) \] $\textbf{Y}$: output, $\textbf{K}$: capital stock, $\textbf{L}$: labour force \[ k=K/L \] $\textbf{k}$: capital/labour ratio \[ y=Y/L \] $\textbf{y}$: output/labour ratio \[ \frac{Y}{L}=\frac{F(K,L)}{L}=F\left(\frac{K}{L},1\right)=F(k,1)=f(k) \] \[ y=f(k) \] \[ f(0)=0,\;f'(k)>0,\;f''(k)<0,\;k>0 \] Assumptions: \[ \dot{L}=nL,\;L(0)=L_{0} \] $\textbf{n}$: constant growth rate of labour force \[ S=sY \] $\textbf{S}$: savings as a constant fraction of output \[ S=I \] $\textbf{I}$: investment, which is the change in the capital stock plus replacement investment: \[ I=\dot{K}+\delta K \] \[ K(0)=K_{0} \]

Show Solution


Differentiating the variable $k$ with respect to time \[ \frac{dk}{dt}=\dot{k}=\dot{\left(\frac{K}{L}\right)}=\frac{L\dot{K}-K\dot{L}}{L^{2}}=\frac{\dot{K}}{L}-\frac{K}{L}\cdot \frac{\dot{L}}{L}=\frac{K}{L}\cdot \frac{\dot{K}}{K}-\frac{K}{L}\cdot \frac{\dot{L}}{L}=k\;\left(\frac{\dot{K}}{K}-\frac{\dot{L}}{L}\right) \] \[ \dot{K}=I-\delta K=S-\delta K=sY-\delta K \] \[ \frac{\dot{K}}{K}=\frac{sY-\delta K}{K}=\frac{sY}{L}\left(\frac{L}{K}\right)-\delta =\frac{sf(k)}{k}-\delta \] \[ \frac{\dot{L}}{L}=\frac{nL}{L}=n \] \[ \dot{k}=sf(k)-\delta k-nk=sf(k)-\left(n+\delta \right)k \] Initial conditions: \[ k(0)=\frac{K_{0}}{L_{0}}=k_{0} \] We use a Cobb-Douglas production function: \[ Y=aK^{\alpha }L^{1-\alpha },\;0<\alpha <1 \] \[ \frac{Y}{L}=a\left(\frac{K}{L}\right)^{\alpha } \] \[ y=f(k)=ak^{\alpha } \] \[ \dot{k}=sak^{\alpha }-\left(n+\delta \right)k \] \[ \dot{k}+\left(n+\delta \right)k=sak^{\alpha } \] This is a Bernoulli equation, which takes the general form \[ \frac{dk}{dt}+kP(t)=k^{\alpha }Q(t) \] \[ k^{-\alpha }\dot{k}+k^{1-\alpha }P(t)=Q(t) \] \[ k^{-\alpha }\dot{k}+\left(n+\delta \right)k^{1-\alpha }=sa \] Defining the following transformation \[ v=k^{1-\alpha } \] we obtain \[ \dot{v}=\left(1-\alpha \right)k^{-\alpha }\dot{k} \] or \[ \dot{k}=\frac{k^{\alpha }}{1-\alpha }\dot{v} \] \[ k^{-\alpha }\frac{k^{\alpha }}{1-\alpha }\dot{v}+\left(n+\delta \right)v=sa \] \[ \frac{\dot{v}}{1-\alpha }+\left(n+\delta \right)v=sa \] \[ \dot{v}+\left({1-\alpha }\right)\left(n+\delta \right)v=\left({1-\alpha }\right)sa \] which is a linear differential equation in $v$.\;Solution: \[ v(t)=\frac{sa}{n+\delta }+\left(v_{0}-\frac{sa}{n+\delta }\right)e^{-\left({1-\alpha }\right)\left(n+\delta \right)t} \] which satisfies the initial condition \[ v_{0}=k_{0}^{1-\alpha } \] \[ k^{1-\alpha }=\frac{sa}{n+\delta }+\left(k_{0}^{1-\alpha }-\frac{sa}{n+\delta }\right)e^{-\left({1-\alpha }\right)\left(n+\delta \right)t} \] Hence \[ k(t)=\left[\frac{sa}{n+\delta }+e^{-\left({1-\alpha }\right)\left(n+\delta \right)t}\left(k_{0}^{1-\alpha }-\frac{sa}{n+\delta }\right)\right]^{\frac{1}{1-\alpha }} \] \[ y (t) =ak^{\alpha }=a\left[\frac{sa}{n+\delta }+e^{-\left({1-\alpha }\right)\left(n+\delta \right)t}\left(k_{0}^{1-\alpha }-\frac{sa}{n+\delta }\right)\right]^{\frac{\alpha }{1-\alpha }} \]